122 research outputs found

    Extramedullary disease in multiple myeloma: a systematic literature review

    Get PDF
    Extramedullary involvement (or extramedullary disease, EMD) represents an aggressive form of multiple myeloma (MM), characterized by the ability of a clone and/or subclone to thrive and grow independent of the bone marrow microenvironment. Several different definitions of EMD have been used in the published literature. We advocate that true EMD is restricted to soft-tissue plasmacytomas that arise due to hematogenous spread and have no contact with bony structures. Typical sites of EMD vary according to the phase of MM. At diagnosis, EMD is typically found in skin and soft tissues; at relapse, typical sites involved include liver, kidneys, lymph nodes, central nervous system (CNS), breast, pleura, and pericardium. The reported incidence of EMD varies considerably, and differences in diagnostic approach between studies are likely to contribute to this variability. In patients with newly diagnosed MM, the reported incidence ranges from 0.5% to 4.8%, while in relapsed/refractory MM the reported incidence is 3.4 to 14%. Available data demonstrate that the prognosis is poor, and considerably worse than for MM without soft-tissue plasmacytomas. Among patients with plasmacytomas, those with EMD have poorer outcomes than those with paraskeletal involvement. CNS involvement is rare, but prognosis is even more dismal than for EMD in other locations, particularly if there is leptomeningeal involvement. Available data on treatment outcomes for EMD are derived almost entirely from retrospective studies. Some agents and combinations have shown a degree of efficacy but, as would be expected, this is less than in MM patients with no extramedullary involvement. The paucity of prospective studies makes it difficult to justify strong recommendations for any treatment approach. Prospective data from patients with clearly defined EMD are important for the optimal evaluation of treatment outcomes

    A Real-Time PCR Antibiogram for Drug-Resistant Sepsis

    Get PDF
    Current molecular diagnostic techniques for susceptibility testing of septicemia rely on genotyping for the presence of known resistance cassettes. This technique is intrinsically vulnerable due to the inability to detect newly emergent resistance genes. Traditional phenotypic susceptibility testing has always been a superior method to assay for resistance; however, relying on the multi-day growth period to determine which antimicrobial to administer jeopardizes patient survival. These factors have resulted in the widespread and deleterious use of broad-spectrum antimicrobials. The real-time PCR antibiogram, described herein, combines universal phenotypic susceptibility testing with the rapid diagnostic capabilities of PCR. We have developed a procedure that determines susceptibility by monitoring pathogenic load with the highly conserved 16S rRNA gene in blood samples exposed to different antimicrobial drugs. The optimized protocol removes heme and human background DNA from blood, which allows standard real-time PCR detection systems to be employed with high sensitivity (<100 CFU/mL). Three strains of E. coli, two of which were antimicrobial resistant, were spiked into whole blood and exposed to three different antibiotics. After real-time PCR-based determination of pathogenic load, a ΔCt<3.0 between untreated and treated samples was found to indicate antimicrobial resistance (P<0.01). Minimum inhibitory concentration was determined for susceptible bacteria and pan-bacterial detection was demonstrated with 3 Gram-negative and 2 Gram-positive bacteria. Species identification was performed via analysis of the hypervariable amplicons. In summary, we have developed a universal diagnostic phenotyping technique that assays for the susceptibility of drug-resistant septicemia with the speed of PCR. The real-time PCR antibiogram achieves detection, susceptibility testing, minimum inhibitory concentration determination, and identification in less than 24 hours

    Screening and contact precautions - A survey on infection control measures for multidrug-resistant bacteria in German university hospitals

    Get PDF
    To assess the scope of infection control measures for multidrug-resistant bacteria in high-risk settings, a survey among university hospitals was conducted. Fourteen professionals from 8 sites participated. Reported policies varied largely with respect to the types of wards conducting screening, sample types used for screening and implementation of contact precautions. This variability among sites highlights the need for an evidence-based consensus of current infection control policies

    Monitoring Procalcitonin in Febrile Neutropenia: What Is Its Utility for Initial Diagnosis of Infection and Reassessment in Persistent Fever?

    Get PDF
    Background: Management of febrile neutropenic episodes (FE) is challenged by lacking microbiological and clinical documentation of infection. We aimed at evaluating the utility of monitoring blood procalcitonin (PCT) in FE for initial diagnosis of infection and reassessment in persistent fever.Methods: PCT kinetics was prospectively monitored in 194 consecutive FE (1771 blood samples): 65 microbiologically documented infections (MDI, 33.5%; 49 due to non-coagulase-negative staphylococci, non-CNS), 68 clinically documented infections (CDI, 35%; 39 deep-seated), and 61 fever of unexplained origin (FUO, 31.5%).Results: At fever onset median PCT was 190 pg/mL (range 30-26'800), without significant difference among MDI, CDI and FUO. PCT peak occurred on day 2 after onset of fever: non-CNS-MDI/deep-seated-CDI (656, 80-86350) vs. FUO (205, 33-771; p&lt;0.001). PCT &gt;500 pg/mL distinguished non-CNS-MDI/deep-seated-CDI from FUO with 56% sensitivity and 90% specificity. PCT was &gt;500 pg/ml in only 10% of FUO (688, 570-771). A PCT peak &gt;500 pg/mL (1196, 524-11950) occurred beyond 3 days of persistent fever in 17/21 (81%) invasive fungal diseases (IFD). This late PCT peak identified IFD with 81% sensitivity and 57% specificity and preceded diagnosis according to EORTC-MSG criteria in 41% of cases. In IFD responding to therapy, median days to PCT &lt;500 pg/mL and defervescence were 5 (1-23) vs. 10 (3-22; p = 0.026), respectively.Conclusion: While procalcitonin is not useful for diagnosis of infection at onset of neutropenic fever, it may help to distinguish a minority of potentially severe infections among FUOs on day 2 after onset of fever. In persistent fever monitoring procalcitonin contributes to early diagnosis and follow-up of invasive mycose
    corecore